Part Number Hot Search : 
SPD5802S 102MB 2SK36 1212D D8049PC C3216X7R HCF40107 IP3842A
Product Description
Full Text Search
 

To Download HUF76121P3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF76121P3, HUF76121S3S
Data Sheet January 2003
47A, 30V, 0.021 Ohm, N-Channel, Logic Level UltraFET Power MOSFETs
These N-Channel power MOSFETs are manufactured using the innovative UltraFETTM process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. Formerly developmental type TA76121.
Features
* Logic Level Gate Drive * 47A, 30V * Ultra Low On-Resistance, rDS(ON) = 0.021 * Temperature Compensating PSPICE(R) Model * Temperature Compensating SABER(c) Model * Thermal Impedance SPICE Model * Thermal Impedance SABER Model * Peak Current vs Pulse Width Curve * UIS Rating Curve * Related Literature - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"
Ordering Information
PART NUMBER HUF76121P3 HUF76121S3S PACKAGE TO-220AB TO-263AB BRAND 76121P 76121S
Symbol
D
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF76121S3ST.
G
S
Packaging
JEDEC TO-220AB
SOURCE DRAIN GATE DRAIN (FLANGE) GATE SOURCE DRAIN (FLANGE)
JEDEC TO-263AB
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (R GS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 30 30 20 47 25 24 Figure 4 Figures 6, 17,18 75 0.6 -40 to 150 300 260 W W/oC
oC oC oC
V V V A A A
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 150oC. TA = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current
BVDSS IDSS
ID = 250A, VGS = 0V (Figure 12) VDS = 25V, VGS = 0V VDS = 25V, VGS = 0V, TC = 150oC
30 -
-
1 250 100
V A A nA
Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance
IGSS
VGS = 20V
VGS(TH) rDS(ON)
VGS = VDS, ID = 250A (Figure 11) ID = 47A, VGS = 10V (Figures 9, 10) ID = 25A, VGS = 5V (Figure 9) ID = 24A, VGS = 4.5V (Figure 9)
1 -
0.015 0.019 0.021
3 0.021 0.028 0.031
V
THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr td(OFF) tf tOFF VDD = 15V, ID 24A, RL = 0.63, VGS = 4.5V, RGS = 10.0 (Figures 15, 21, 22) 15 160 14 31 265 70 ns ns ns ns ns ns R JC RJA (Figure 3) TO-220 and TO-263 1.66 62
oC/W oC/W
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S
Electrical Specifications
PARAMETER SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) 850 465 100 pF pF pF Qg(TOT) Qg(5) Qg(TH) Qgs Qgd VGS = 0V to 10V VDD = 15V, ID 25A, RL = 0.6 VGS = 0V to 5V Ig(REF) = 1.0mA (Figures 14, 19, 20) VGS = 0V to 1V 24 13 1.0 2.50 7.80 30 16 1.2 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 15V, ID 47A, RL = 0.32, VGS = 10V, RGS = 12.5 (Figures 16, 21, 22) 6 47 47 42 80 135 ns ns ns ns ns ns TA = 25oC, Unless Otherwise Specified (Continued) SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge SYMBOL VSD trr QRR ISD = 25A ISD = 25A, dISD/dt = 100A/s ISD = 25A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 65 100 UNITS V ns nC
Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) 50
40 VGS = 10V 30 VGS = 4.5V 20
10
0 25 50 75 100 125 150 TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S Typical Performance Curves
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10 -1 10 0 101
(Continued)
SINGLE PULSE 0.01 10-5 10 -4
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
TC = 25oC VGS = 10V
I DM, PEAK CURRENT (A)
FOR TEMPERATURES ABOVE 25 oC DERATE PEAK CURRENT AS FOLLOWS: I
= I25
150 - TC 125
VGS = 5V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 40 10 -5 10-4 10 -3 10-2 t, PULSE WIDTH (s) 10 -1 100 101
FIGURE 4. PEAK CURRENT CAPABILITY
1000
I AS, AVALANCHE CURRENT (A)
TJ = MAX RATED TC = 25oC
500
ID, DRAIN CURRENT (A)
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
100
100s
STARTING TJ = 25oC 10
10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10
1ms 10ms BVDSS MAX = 30V 100
STARTING TJ = 150oC
1 0.001
0.01
VDS, DRAIN TO SOURCE VOLTAGE (V)
0.1 1 10 tAV, TIME IN AVALANCHE (ms)
100
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S Typical Performance Curves
100 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX ID, DRAIN CURRENT (A) 80 25 oC 60 150oC -40oC ID, DRAIN CURRENT (A) 80 VGS = 4V 60 VGS = 3.5V
(Continued)
100
VGS = 10V VGS = 5V
VGS = 4.5V
40
40
VGS = 3V 20 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 0
20 VDD = 15V 0 0 1 2 3 4 5 VGS, GATE TO SOURCE VOLTAGE (V)
0
1
2
3
4
5
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
40 ID = 47A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (m) 35 ID = 28A 30 25 20 ID = 15A 15
NORMALIZED DRAIN TO SOURCE ON RESISTANCE
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX
1.6
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 47A
1.4
1.2
1.0
10 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10
0.8 -60 0 60 120 180 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. SOURCE TO DRAIN ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
1.2 NORMALIZED DRAIN TO SOURCE BREAKOWN VOLTAGE VGS = VDS, ID = 250A NORMALIZED GATE THRESHOLD VOLTAGE
1.2 ID = 250A
1.0
1.1
0.8
1.0
0.6 -60 0 60 120 180 TJ, JUNCTION TEMPERATURE (oC)
0.9 -60.0
0.0
60.0
120
180
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S Typical Performance Curves
1200 CISS C, CAPACITANCE (pF) 900 COSS 600
(Continued)
10 VGS , GATE TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS C DS + CGD
8
6
4 WAVEFORMS IN DESCENDING ORDER: I D = 47A I D = 28A I D = 15A 20 25
300 CRSS
2 VDD = 15V 0 0 5
0 0 5 10 15 20 25 VDS , DRAIN TO SOURCE VOLTAGE (V) 30
10 15 Qg, GATE CHARGE (nC)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
500 VGS = 4.5V, VDD = 15V, ID = 24A, RL = 0.63 SWITCHING TIME (ns) SWITCHING TIME (ns) 400 tr 300
200 VGS = 10V, VDD = 15V, ID = 47A, RL = 0.32 td(OFF)
150 tf 100 tr 50 td(ON) 0
200 td(OFF) 100 td(ON) 0 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE () tf
0
10
20
30
40
50
RGS, GATE TO SOURCE RESISTANCE ()
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S Test Circuits and Waveforms
VDS RL VDD VDS VGS = 10V VGS
+
(Continued)
Qg(TOT)
Qg(5) VDD VGS VGS = 1V 0 Qg(TH) IgREF) 0 VGS = 5V
DUT Ig(REF)
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
DUT RGS
VDD 0
10% 90%
10%
VGS 0 10%
50% PULSE WIDTH
50%
VGS
FIGURE 21. SWITCHING TIME TEST CIRCUIT
FIGURE 22. SWITCHING TIME WAVEFORM
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S PSPICE Electrical Model
.SUBCKT HUF76121 2 1 3 ;
CA 12 8 1.2e-9 CB 15 14 1.23e-9 CIN 6 8 7.6e-10
10
rev March 1998
LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + EBREAK MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 14 IT 15 17 RBREAK 18 RVTEMP 19 7 SOURCE 3 17 18 DBODY DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
EBREAK 11 7 17 18 33.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 3.57e-9 LSOURCE 3 7 4.25e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.5e-3 RGATE 9 20 4 RLDRAIN 2 5 10 RLGATE 1 9 35.7 RLSOURCE 3 7 42.5 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 10e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
GATE 1
ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6
RLGATE
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*181),4))} .MODEL DBODYMOD D (IS = 4e-13 RS = 6.3e-3 TRS1 = 1e-3 TRS2 = 3e-6 CJO = 1.33e-9 TT = 2.8e-8 M = 0.4 XTI = 4.3 N = 0.95 IKF = 5) .MODEL DBREAKMOD D (RS = 1.05e-1 TRS1 = 0 TRS2 = 2.5e-5) .MODEL DPLCAPMOD D (CJO = 7.8e-10 IS = 1e-30 N = 10 M = 0.63) .MODEL MMEDMOD NMOS (VTO = 1.8 KP = 3.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 4) .MODEL MSTROMOD NMOS (VTO = 2.08 KP = 65 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.54 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = 7e-7) .MODEL RDRAINMOD RES (TC1 = 1.6e-2 TC2 = 4e-5) .MODEL RSLCMOD RES (TC1 = 5e-3 TC2 = 8e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -1.7e-3 TC2 = -4e-6) .MODEL RVTEMPMOD RES (TC1 = -1.2e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5 VOFF= -3) VON = -3 VOFF= -5) VON = -0.5 VOFF= 2) VON = 2 VOFF= -0.5)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2003 Fairchild Semiconductor Corporation
+
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
-
RDRAIN 21 16
-
VBAT +
8 22 RVTHRES
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S SABER Electrical Model
REV March 1998 template huf76121 n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 4e-13, xti = 4.3, cjo = 1.33e-9, tt = 2.8e-8, n = 0.95, m = 0.4) d..model dbreakmod = () d..model dplcapmod = (cjo = 7.8e-10, is = 1e-30, n = 10, m = 0.63) m..model mmedmod = (type=_n, vto = 1.8, kp = 3.5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.08, kp = 65, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.54, kp = 0.1, is = 1e-30, tox = 1) DPLCAP sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3) 10 sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2, voff = -0.5) c.ca n12 n8 = 1.2e-9 c.cb n15 n14 = 1.23e-9 c.cin n6 n8 = 7.6e-10 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 3.57e-9 l.lsource n3 n7 = 4.25e-9
GATE 1 RLGATE CIN LGATE RSLC2 ISCL
LDRAIN 5 RLDRAIN RDBREAK 72 DBREAK 11 MWEAK DBODY MMED MSTRO 8 EBREAK + 17 18 71 RDBODY DRAIN 2 RSLC1 51
ESG + EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6
50 RDRAIN 21 16
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 7e-7 res.rdbody n71 n5 = 6.3e-3, tc1 = 1e-3, tc2 = 3e-6 res.rdbreak n72 n5 = 1.05e-1, tc1 = 0, tc2 = 2.5e-5 res.rdrain n50 n16 = 2.5e-3, tc1 = 1.6e-2, tc2 = 4e-5 res.rgate n9 n20 = 4 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 35.7 res.rlsource n3 n7 = 42.5 res.rslc1 n5 n51 = 1e-6, tc1 = 5e-3, tc2 = 8e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 10e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.2e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -1.7e-3, tc2 = -4e-6 spe.ebreak n11 n7 n17 n18 = 33.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/181))** 4)) } }
S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B
RSOURCE
LSOURCE 7 RLSOURCE SOURCE 3
15
RBREAK 17 18 RVTEMP
CB + EDS 5 8 14 IT
19
VBAT +
-
-
8 22 RVTHRES
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
HUF76121P3, HUF76121S3S SPICE Thermal Model
REV March 1998 HUF76121 CTHERM1 th 6 1.1e-3 CTHERM2 6 5 2.9e-3 CTHERM3 5 4 3.2e-3 CTHERM4 4 3 1.5e-2 CTHERM5 3 2 3.9e-1 CTHERM6 2 tl 2.2 RTHERM1 th 6 1.0e-4 RTHERM2 6 5 2.0e-3 RTHERM3 5 4 3.4e-1 RTHERM4 4 3 4.6e-1 RTHERM5 3 2 1.8e-1 RTHERM6 2 tl 7.0e-2
RTHERM1 CTHERM1 th JUNCTION
6
RTHERM2
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
Saber thermal model HUF76121 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.1e-3 ctherm.ctherm2 6 5 = 2.9e-3 ctherm.ctherm3 5 4 = 3.2e-3 ctherm.ctherm4 4 3 = 1.5e-2 ctherm.ctherm5 3 2 = 3.9e-1 ctherm.ctherm6 2 tl = 2.2 rtherm.rtherm1 th 6 = 1.0e-4 rtherm.rtherm2 6 5 = 2.0e-3 rtherm.rtherm3 5 4 = 3.4e-1 rtherm.rtherm4 4 3 = 4.6e-1 rtherm.rtherm5 3 2 = 1.8e-1 rtherm.rtherm6 2 tl = 7.0e-2 }
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2003 Fairchild Semiconductor Corporation
HUF76121P3, HUF76121S3S Rev. C1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FACTTM ActiveArrayTM FACT Quiet SeriesTM BottomlessTM FAST(R) CoolFETTM FASTrTM CROSSVOLTTM FRFETTM DOMETM GlobalOptoisolatorTM EcoSPARKTM GTOTM E2CMOSTM HiSeCTM I2CTM EnSignaTM Across the board. Around the world.TM The Power FranchiseTM Programmable Active DroopTM DISCLAIMER
ImpliedDisconnectTM ISOPLANARTM LittleFETTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC(R) OPTOPLANARTM
PACMANTM POPTM Power247TM PowerTrench(R) QFETTM QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SILENT SWITCHER(R) SMART STARTTM
SPMTM StealthTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic(R) TruTranslationTM UHCTM UltraFET(R) VCXTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Advance Information Product Status Formative or In Design First Production Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Preliminary
No Identification Needed
Full Production
Obsolete
Not In Production
Rev. I2


▲Up To Search▲   

 
Price & Availability of HUF76121P3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X